Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Lancet Child Adolesc Health ; 6(9): 654-666, 2022 09.
Article in English | MEDLINE | ID: covidwho-20243577

ABSTRACT

Paper 2 of the paediatric regenerative medicine Series focuses on recent advances in postnatal approaches. New gene, cell, and niche-based technologies and their combinations allow structural and functional reconstitution and simulation of complex postnatal cell, tissue, and organ hierarchies. Organoid and tissue engineering advances provide human disease models and novel treatments for both rare paediatric diseases and common diseases affecting all ages, such as COVID-19. Preclinical studies for gastrointestinal disorders are directed towards oesophageal replacement, short bowel syndrome, enteric neuropathy, biliary atresia, and chronic end-stage liver failure. For respiratory diseases, beside the first human tracheal replacement, more complex tissue engineering represents a promising solution to generate transplantable lungs. Genitourinary tissue replacement and expansion usually involve application of biocompatible scaffolds seeded with patient-derived cells. Gene and cell therapy approaches seem appropriate for rare paediatric diseases of the musculoskeletal system such as spinal muscular dystrophy, whereas congenital diseases of complex organs, such as the heart, continue to challenge new frontiers of regenerative medicine.


Subject(s)
COVID-19 , Regenerative Medicine , Child , Humans , Tissue Engineering
2.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: covidwho-20232955

ABSTRACT

The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.


Subject(s)
COVID-19 , Liver Diseases , Nanostructures , Humans , Regenerative Medicine , Hepatocytes/transplantation , COVID-19/therapy , Liver Diseases/therapy , Stem Cells , Liver Regeneration , Magnetic Phenomena
3.
Stem Cell Res Ther ; 14(1): 112, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2323672

ABSTRACT

Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.


Subject(s)
Regenerative Medicine , Tissue Engineering , Regenerative Medicine/methods , Tissue Engineering/methods , Cell Engineering , Stem Cells , Cell- and Tissue-Based Therapy , Extracellular Matrix , Tissue Scaffolds
4.
Regen Med ; 16(1): 1-8, 2021 01.
Article in English | MEDLINE | ID: covidwho-2263872

ABSTRACT

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in September 2020.


Subject(s)
Regenerative Medicine , Stem Cell Research , Drug Industry
5.
Front Immunol ; 14: 1120175, 2023.
Article in English | MEDLINE | ID: covidwho-2265624

ABSTRACT

In the last few decades, the practical use of stem cells (SCs) in the clinic has attracted significant attention in the regenerative medicine due to the ability of these cells to proliferate and differentiate into other cell types. However, recent findings have demonstrated that the therapeutic capacity of SCs may also be mediated by their ability to secrete biologically active factors, including extracellular vesicles (EVs). Such submicron circular membrane-enveloped vesicles may be released from the cell surface and harbour bioactive cargo in the form of proteins, lipids, mRNA, miRNA, and other regulatory factors. Notably, growing evidence has indicated that EVs may transfer their bioactive content into recipient cells and greatly modulate their functional fate. Thus, they have been recently envisioned as a new class of paracrine factors in cell-to-cell communication. Importantly, EVs may modulate the activity of immune system, playing an important role in the regulation of inflammation, exhibiting broad spectrum of the immunomodulatory activity that promotes the transition from pro-inflammatory to pro-regenerative environment in the site of tissue injury. Consequently, growing interest is placed on attempts to utilize EVs in clinical applications of inflammatory-related dysfunctions as potential next-generation therapeutic factors, alternative to cell-based approaches. In this review we will discuss the current knowledge on the biological properties of SC-derived EVs, with special focus on their role in the regulation of inflammatory response. We will also address recent findings on the immunomodulatory and pro-regenerative activity of EVs in several disease models, including in vitro and in vivo preclinical, as well as clinical studies. Finally, we will highlight the current perspectives and future challenges of emerging EV-based therapeutic strategies of inflammation-related diseases treatment.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Regenerative Medicine , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Inflammation/metabolism
6.
Life Sci ; 319: 121524, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2275448

ABSTRACT

Exosomes are small membrane vesicles secreted by most cell types, and widely exist in cell supernatants and various body fluids. They can transmit numerous bioactive elements, such as proteins, nucleic acids, and lipids, to affect the gene expression and function of recipient cells. Mesenchymal stem cells (MSCs) have been confirmed to be a potentially promising therapy for tissue repair and regeneration. Accumulating studies demonstrated that the predominant regenerative paradigm of MSCs transplantation was the paracrine effect but not the differentiation effect. Exosomes secreted by MSCs also showed similar therapeutic effects as their parent cells and were considered to be used for cell-free regenerative medicine. However, the inefficient and limited production has hampered their development for clinical translation. In this review, we summarize potential methods to efficiently promote the yield of exosomes. We mainly focus on engineering the process of exosome biogenesis and secretion, altering the cell culture conditions, cell expansion through 3D dynamic culture and the isolation of exosomes. In addition, we also discuss the application of MSCs-derived exosomes as therapeutics in disease treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Cell- and Tissue-Based Therapy , Regenerative Medicine/methods , Cell Differentiation/physiology
7.
Trends Biotechnol ; 41(3): 358-373, 2023 03.
Article in English | MEDLINE | ID: covidwho-2255649

ABSTRACT

Cellular therapies are poised to transform the field of medicine by restoring dysfunctional tissues and treating various diseases in a dynamic manner not achievable by conventional pharmaceutics. Spanning various therapeutic areas inclusive of cancer, regenerative medicine, and immune disorders, cellular therapies comprise stem or non-stem cells derived from various sources. Despite numerous clinical approvals or trials underway, the host immune response presents a critical impediment to the widespread adoption and success of cellular therapies. Here, we review current research and clinical advances in immunomodulatory strategies to mitigate immune rejection or promote immune tolerance to cellular therapies. We discuss the potential of these immunomodulatory interventions to accelerate translation or maximize the prospects of improving therapeutic outcomes of cellular therapies for clinical success.


Subject(s)
Cell- and Tissue-Based Therapy , Immune Tolerance , Regenerative Medicine , Immunity
8.
Nat Med ; 28(12): 2486-2496, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160250

ABSTRACT

Single-cell atlases promise to provide a 'missing link' between genes, diseases and therapies. By identifying the specific cell types, states, programs and contexts where disease-implicated genes act, we will understand the mechanisms of disease at the cellular and tissue levels and can use this understanding to develop powerful disease diagnostics; identify promising new drug targets; predict their efficacy, toxicity and resistance mechanisms; and empower new kinds of therapies, from cancer therapies to regenerative medicine. Here, we lay out a vision for the potential of cell atlases to impact the future of medicine, and describe how advances over the past decade have begun to realize this potential in common complex diseases, infectious diseases (including COVID-19), rare diseases and cancer.


Subject(s)
COVID-19 , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Regenerative Medicine , Drug Delivery Systems
10.
Curr Opin Genet Dev ; 75: 101946, 2022 08.
Article in English | MEDLINE | ID: covidwho-2004086

ABSTRACT

Ex situ experimental models have become a main stay in pulmonary research. Organoids and explant systems have uncovered novel stem cell subsets, served as disease models, delineated cell fate transitions, and aided high throughput pre-clinical drug screening. Integration of gene-editing and bioengineering approaches have further generated novel avenues for regenerative medicine and transplantation strategies. In this article, we highlight recent studies, aided by ex situ systems, which have contributed to significant advances in our understanding of the human lower respiratory tract. We present key observations from these studies to gain improved insights into human disease. We conclude this article with a summary of existing challenges and potential technological advances to successfully mirror human tissue physiology.


Subject(s)
Organoids , Regenerative Medicine , Cell Differentiation , Humans , Models, Theoretical , Stem Cells
11.
Regen Med ; 15(7): 1833-1840, 2020 07.
Article in English | MEDLINE | ID: covidwho-1910922

ABSTRACT

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in March 2020.


Subject(s)
Drug Industry , Regenerative Medicine/trends , Stem Cell Research , Stem Cells/cytology , Clinical Trials as Topic , Humans
12.
Chin Med J (Engl) ; 135(8): 901-910, 2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1901272

ABSTRACT

ABSTRACT: As human life expectancy continues to increase and the birth rate continues to decline, the phenomenon of aging is becoming more prominent worldwide. Therefore, addressing the problems associated with global aging has become a current research focus. The main manifestations of human aging are structural degeneration and functional decline of aging tissues and organs, quality of life decline, decreased ability to resist diseases, and high incidence rates of a variety of senile degenerative diseases. Thus far, no ideal treatments have been found. Stem cell (SC) therapies have broad application prospects in the field of regenerative medicine due to the inherent biological characteristics of SCs, such as their plasticity, self-renewal, and multidirectional differentiation potential. Thus, SCs could delay or even reverse aging. This manuscript reviews the causes of human aging, the biological characteristics of SCs, and research progress on age reversal.


Subject(s)
Aging , Quality of Life , Cell Differentiation , Humans , Regenerative Medicine , Stem Cells
13.
Recent Adv Inflamm Allergy Drug Discov ; 15(1): 5-8, 2022.
Article in English | MEDLINE | ID: covidwho-1896611
14.
Stem Cell Rev Rep ; 18(5): 1525-1545, 2022 06.
Article in English | MEDLINE | ID: covidwho-1763475

ABSTRACT

Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.


Subject(s)
Adult Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Adult , Cell- and Tissue-Based Therapy , Humans , Regenerative Medicine
15.
Stem Cells Transl Med ; 11(2): 107-113, 2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1752179

ABSTRACT

Advances in regenerative medicine manufacturing continue to be a priority for achieving the full commercial potential of important breakthrough therapies. Equally important will be the establishment of distribution chains that support the transport of live cells and engineered tissues and organs resulting from these advanced biomanufacturing processes. The importance of a well-managed distribution chain for products requiring specialized handling procedures was highlighted during the COVID-19 pandemic and serves as a reminder of the critical role of logistics and distribution in the success of breakthrough therapies. This perspective article will provide insight into current practices and future considerations for creating global distribution chains that facilitate the successful deployment of regenerative medicine therapies to the vast number of patients that would benefit from them worldwide.


Subject(s)
COVID-19 , Regenerative Medicine , Cell- and Tissue-Based Therapy , Humans , Pandemics , Regenerative Medicine/methods , Tissue Engineering/methods
16.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: covidwho-1512380

ABSTRACT

Heparin and its derivatives are saving thousands of human lives annually, by successfully preventing and treating thromboembolic events. Although the mode of action during anticoagulation is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and other side effects. New applications in regenerative medicine have evolved supporting production of cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical and clinical data, this review summarizes the impact for manufacturing and application of cell therapeutics and highlights the need for discriminating the different heparins.


Subject(s)
Anticoagulants/chemistry , Cell- and Tissue-Based Therapy/methods , Heparin/analogs & derivatives , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Cell Adhesion , Hemorrhage/etiology , Heparin/adverse effects , Heparin/therapeutic use , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Regenerative Medicine , Thromboembolism/drug therapy
17.
Cells ; 10(11)2021 11 10.
Article in English | MEDLINE | ID: covidwho-1512137

ABSTRACT

Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.


Subject(s)
Cardiovascular Diseases/therapy , Genomics , Pluripotent Stem Cells/transplantation , Artificial Intelligence , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular System/cytology , Cardiovascular System/growth & development , Cell Differentiation , Drug Discovery , Gene Editing , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Precision Medicine , Regenerative Medicine , Safety , Translational Research, Biomedical
18.
Adv Drug Deliv Rev ; 179: 114007, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482395

ABSTRACT

In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.


Subject(s)
Drug Delivery Systems , RNA, Messenger/administration & dosage , Regeneration , Regenerative Medicine/trends , Animals , COVID-19 Vaccines/administration & dosage , Gene Transfer Techniques , Genetic Therapy , Humans , RNA, Messenger/immunology
19.
Cells ; 10(11)2021 10 25.
Article in English | MEDLINE | ID: covidwho-1480601

ABSTRACT

As the number of confirmed cases and deaths occurring from Coronavirus disease 2019 (COVID-19) surges worldwide, health experts are striving hard to fully comprehend the extent of damage caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although COVID-19 primarily manifests itself in the form of severe respiratory distress, it is also known to cause systemic damage to almost all major organs and organ systems within the body. In this review, we discuss the molecular mechanisms leading to multi-organ failure seen in COVID-19 patients. We also examine the potential of stem cell therapy in treating COVID-19 multi-organ failure cases.


Subject(s)
COVID-19/complications , COVID-19/therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/therapy , Stem Cell Transplantation , COVID-19/immunology , Clinical Trials as Topic , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Humans , Immunomodulation , Multiple Organ Failure/immunology , Regenerative Medicine , SARS-CoV-2/pathogenicity , Stem Cells/cytology , Stem Cells/immunology
20.
Adv Drug Deliv Rev ; 179: 114002, 2021 12.
Article in English | MEDLINE | ID: covidwho-1465981

ABSTRACT

After thirty years of intensive research shaping and optimizing the technology, the approval of the first mRNA-based formulation by the EMA and FDA in order to stop the COVID-19 pandemic was a breakthrough in mRNA research. The astonishing success of these vaccines have brought the mRNA platform into the spotlight of the scientific community. The remarkable persistence of the groundwork is mainly attributed to the exceptional benefits of mRNA application, including the biological origin, immediate but transitory mechanism of action, non-integrative properties, safe and relatively simple manufacturing as well as the flexibility to produce any desired protein. Based on these advantages, a practical implementation of in vitro transcribed mRNA has been considered in most areas of medicine. In this review, we discuss the key preconditions for the rise of the mRNA in the medical field, including the unique structural and functional features of the mRNA molecule and its vehicles, which are crucial aspects for a production of potent mRNA-based therapeutics. Further, we focus on the utility of mRNA tools particularly in the scope of regenerative medicine, i.e. cell reprogramming approaches or manipulation strategies for targeted tissue restoration. Finally, we highlight the strong clinical potential but also the remaining hurdles to overcome for the mRNA-based regenerative therapy, which is only a few steps away from becoming a reality.


Subject(s)
Cell- and Tissue-Based Therapy/methods , RNA, Messenger/therapeutic use , Regenerative Medicine/trends , Tissue Engineering/methods , Animals , COVID-19 , Humans
SELECTION OF CITATIONS
SEARCH DETAIL